

PROGRAMADOR DE PARISON

MANUAL DO USUÁRIO

ÍNDICE

SECÇÃO	Pg
1. Apresentação	05
2. Descrição geral do programador de Parison G25	06
2.1. Funcionamento	06
2.2. Operação em Máquinas de Extrusão Contínua	07
2.3. Operação em Máquinas de Acumulação	08
2.4. Identificando e configurando o Programador G25	09
3. Operando o programador G25	10
3.1. Ajustes de processo no modo extrusão contínua	10
3.1.1. Programa	10
3.1.2. Escala	10
3.1.3. Peso	11
3.1.4. Seleção da faixa de tempo – 0,5-10s / 5-100s	12
3.1.5. Seleção do modo de operação – Auto / Manual	12
3.1.6. Tempo	12
3.1.7. Retardo	13
3.1.8. Seleção Converge / Diverge	13
3.1.9. Chave Teste / Ciclo	13
3.1.10. Indicações no modo extrusão contínua	14
3.1.11. Espessura de Retorno	14

ÍNDICE

SECÇÃO	Pg
3.2. Ajustes de processo no modo Acumulação	15
3.2.1. Potenciômetros de programa	15
3.2.2. Escala	15
3.2.3. Peso	15
3.2.4. Retardo	16
3.2.5. Tempo	16
3.2.6. Espessura de Retorno	17
3.2.7. Seleção Converge / Diverge	17
3.2.8. Chave Teste / Ciclo	17
3.2.9. Indicações no modo acumulação	18
4. Instalação	19
4.1. Dimensões para instalação do programador G25	19
5. Test Box Z129-008-002	20
6. Ajustes do curso da ferramenta e acumulador	21
6.1. Servoatuadores com eletrônica integrada	21
6.2. Servoatuadores com transdutor de posição, sem eletrônica integrada	21
6.2.1. Servoatuadores com transdutor de posição DCDT ou LVDT	22
6.2.2. Servoatuadores com potenciômetro linear	23
6.3. Ajuste do indicador de posição - bargraph	24
6.4. Ajuste do curso do acumulador	24
6.5. Retardo de Espessura de Retorno (RER)	24

ÍNDICE

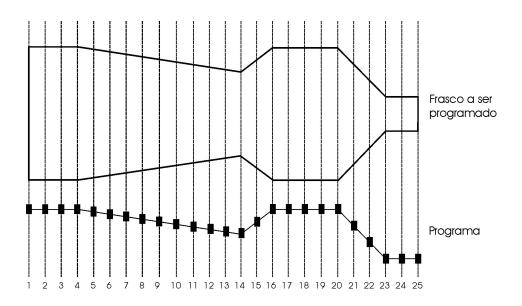
SECÇÃO	Pg
7. Diagramas de ligações	25
7.1. Ligação para servoatuador +/-15V com servoválvula 631	25
7.2. Ligação para servoatuador +/-15V, +24V com servoválvula DDV	25
7.3. Ligação para servoatuador +24V com servoválvula DDV ou 631	26
7.4. Ligação para servoatuadores L085 +/-15V com válvula 631	26
7.5. Ligação para servoválvula 631 e transdutor DCDT Z131-300-025	27
7.6. Ligação para servoválvula 631 e transdutor DCDT A31121-004	27
7.7. Ligação para servoválvula 631 e transdutor LVDT	28
7.8. Ligação para servoválvula 631 e potenciômetro linear	28
7.9. Ligação para servoválvula DDV e transdutor DCDT Z131-300-025	29
7.10. Ligação para servoválvula DDV e transdutor DCDT A31121-004	29
7.11. Ligação para servoválvula DDV e transdutor LVDT	30
7.12. Ligação para servoválvula DDV e potenciômetro linear	30
7.13. Ligação para transdutor do acumulador	31

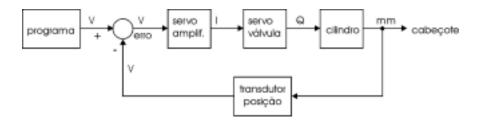
1. APRESENTAÇÃO

O programador de parison MOOG **G25** foi concebido para ser utilizado tanto em máquinas de sopro por extrusão contínua quanto em máquinas de sopro por acumulação, bastando apenas inverter a posição de uma chave. Pode ser utilizado com praticamente todos os tipos de transdutores, servoatuadores e servoválvulas, bastando apenas alterar os cabos de conexão.

De fácil operação, o programador G25 proporciona ao usuário, a otimização da espessura da parede do parison, com as seguintes vantagens:

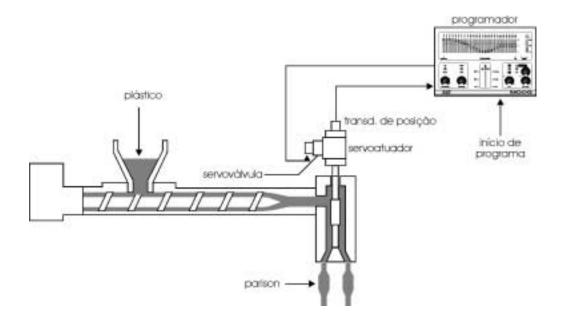
- Economia de resina resultado da distribuição homogênea de material.
- **Aumento de produtividade** com a redução de material, o tempo de resfriamento será menor, reduzindo o tempo de ciclo da máquina.
- **Melhoria na qualidade** o produto resulta mais leve e resistente, com eliminação de rejeitos, resultado da distribuição do material, feita com alta repetibilidade garantida pelo servocontrole em malha fechada.


Com o programador de parison MOOG G25 o usuário dispõe de um equipamento que pode ser operado com segurança e rapidez sem exigir treinamento especial do operador.

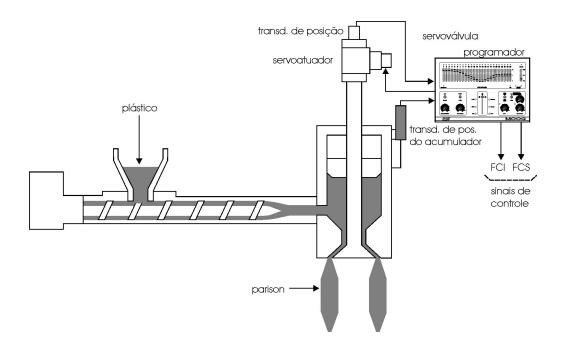

2. DESCRIÇÃO GERAL DO PROGRAMADOR DE PARISON

2.1. FUNCIONAMENTO

A função principal de um programador de Parison é controlar a espessura da parede da mangueira de material plástico em alta temperatura (Parison) durante o processo de extrusão, segundo um perfil previamente programado (Programa), conforme mostra a figura abaixo:



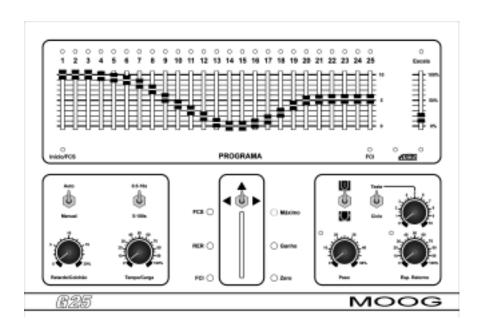
Para obter um controle preciso da espessura do parison, o programador controla a abertura do cabeçote através de um servocontrole de posição em malha fechada, conforme mostra o diagrama de blocos a seguir :


Numa máquina sopradora de extrusão contínua, o plástico (normalmente granulado) é introduzido num extremo da rosca extrusora, e passa por resistências de aquecimento à medida que é extrudado, saindo plastificado no outro extremo da rosca, conectado ao cabeçote.

A velocidade da rosca extrusora define o intervalo de tempo em que o parison alcança o tamanho desejado. Nesse momento, o molde fecha e uma faca aquecida corta o parison, fornecendo um sinal de início de programação para o G25, quando um novo ciclo é então iniciado, e se repete indefinidamente.

Este processo é normalmente utilizado para fabricação de peças com volumes de até 5 litros, apesar de ser possível a produção de peças maiores, dependendo da capacidade da máguina.

Numa máquina sopradora por acumulação, após o plástico granulado passar pelas resistências, a rosca extrusora preenche o cilindro acumulador com uma quantidade de material plástico derretido suficiente para formar a peça, definido pelo ajuste de carga.


Quando é atingido o volume de plástico desejado, o programador gera um sinal de fim de curso superior (FCS), e a máquina injeta rapidamente o plástico acumulado, sendo o programa executado simultaneamente, acompanhando a posição de êmbolo do acumulador.

No término da extrusão o programador gera um sinal de fim de curso inferior (FCI), para que a máquina inicie um novo ciclo. Com isso, o acumulador começa a ser preenchido novamente, passando a acumular material, enquanto o parison injetado esfria dentro do molde.

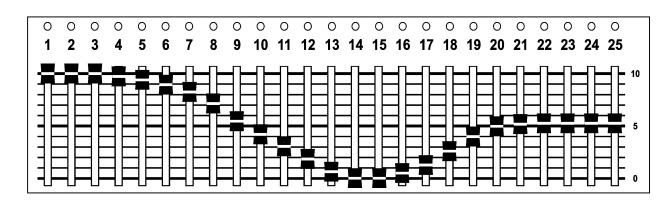
Esse processo é utilizado para peças de grandes volumes, normalmente à partir de 10 litros.

MODELO	DESCRIÇÃO	
Z141-025G001	 Alimentação: 90 à 250Vac. Usado com transdutor DCDT ou Potenciômetro Linear. Saída para servoválvula em tensão ou corrente. Saída para servoatuador com eletrônica integrada. 	
Z141-025G002 (c/ Interface CA Z123-340)	 - Alimentação : 90 à 250Vac. - Usado com transdutor LVDT, DCDT ou potenciômetro. - Saída para servoválvula em tensão ou corrente. - Saída para servoatuador com eletrônica integrada. 	
Z141-025G003	 - Alimentação : 18 à 30Vcc. - Usado com transdutor DCDT ou Potenciometro Linear - Saída para servoválvula em tensão ou corrente. - Saída para servoatuador com eletrônica integrada. 	
Z141-025G004 (c/ Interface CA Z123-340)	 - Alimentação : 18 à 30Vcc. - Usado com transdutor LVDT, DCDT e potenciômetro. - Saída para servoválvula em tensão ou corrente. - Saída para servoatuador com eletrônica integrada. 	

IMPORTANTE: Antes da instalação do programador, deve-se selecionar o modo de operação do mesmo (extrusão contínua ou acumulação). Para tanto, o usuário deve colocar a chave seletora que se encontra na parte traseira do gabinete do programador na posição adequada (com auxílio de uma chave de fenda ou com um alicate de bico fino):

Modo extrusão contínua: chave seletora para cima. **Modo acumulação:** chave seletora para baixo.

3. OPERANDO O PROGRAMADOR G25


3.1. AJUSTES DE PROCESSO NO MODO EXTRUSÃO CONTÍNUA

3.1.1. Potenciômetros de programa

Ajustam individualmente os PONTOS DO PROGRAMA (1 a 25) que interpolados linearmente geram o perfil da abertura da ferramenta, que varia em função do formato da peça a ser programada.

O ponto 1 representa a parte inferior da peça, e o ponto 25 representa a parte superior.

O curso graduado de 0 a 10 representa a abertura da ferramenta de zero ao máximo (a abertura máxima é definida pelo ajuste de Escala. Vide item 3.1.2 a seguir).

3.1.2. Escala

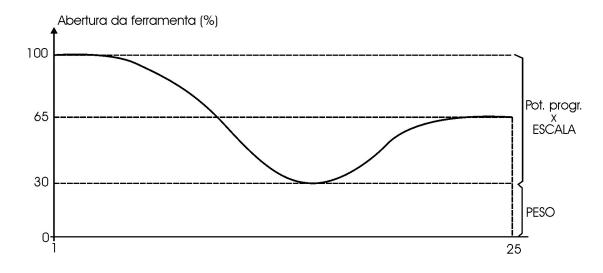
Multiplica o perfil de programação (definido pelos potenciômetros de programa) por um fator de 0 a 100%.

No modo extrusão contínua, o ajuste de **Escala** fica habilitado permanentemente, comprovado pelo LED indicador do ajuste de **Escala** aceso.

3.1.3. Peso

Determina a abertura mínima da ferramenta durante a programação, que pode variar entre 0 a 50% da abertura total da ferramenta.

No modo extrusão contínua o ajuste de **Peso** fica habilitado permanentemente, comprovado pelo LED indicador do ajuste de **Peso** aceso.


IMPORTANTE: A abertura da ferramenta é determinada ponto a ponto da seguinte forma:

Abertura ponto z(%) =
$$\left\{\frac{\text{Ajuste do potenciômetro de programa ponto z}}{10}\right\}^{POT. PROGR.} x Escala (%) + Peso (%)$$

Exemplo : **Potenciômetro do ponto 20** ajustado em **8**, **Escala = 40**% e **Peso = 30**% teremos, no momento em que o ponto 20 estiver ativado, a seguinte abertura da ferramenta :

Abertura da ferramenta no ponto 20 = { 8/10 x 40% } + 30% = 62 % da abertura máxima

O mesmo ocorre com todos os pontos de programa. O gráfico abaixo mostra a abertura da ferramenta para o perfil do item 3.1.1 com Escala = 70% e Peso = 30%:

3.1.4. Seleção da faixa de tempo - 0,5-10s / 5-100s

0.5-10s

5-100s

Seleciona a faixa de tempo de ciclo adequada à operação do programador.

Para ciclos entre 1 a 10 segundos (tempo curto), esta chave deve ser posicionada em **0,5-10s**.

Para ciclos entre 10 a 100 segundos (tempo longo), posicionar a chave em **5-100s**.

3.1.5. Seleção do modo de operação - Auto / Manual

No modo automático (**Auto**) o programa se sincroniza automaticamente com o ciclo da máquina após 2 ou 3 ciclos, e acompanha as variações que por ventura possam ocorrer.

O modo automático é o mais recomendado para operação.

Auto

Manual

No modo **Manual**, o tempo de ciclo é ajustado no potenciômetro **Tempo** / Carga (3.1.6), e permanece constante, mesmo que o ciclo da máquina se altere.

O modo manual pode ser utilizado nos casos onde o molde está distante da saída da ferramenta, o que ocasiona uma rebarba superior muito grande.

Neste caso, ajusta-se o tempo do programa (vide item abaixo) mais curto que o ciclo da máquina, fazendo com que a rebarba superior seja definida apenas pelo ponto 25, deixando os 24 pontos restantes para o perfil, evitando perda desnecessária de pontos de programação no trecho da rebarba a ser descartada. O ajuste manual também pode ser utilizado no caso de falha do

circuito de correção automática.

3.1.6. Tempo / Carga

Tempo/Carga

Ajusta o tempo de duração do programa quando o programador estiver operando no modo manual (chave **Auto / Manual** em **Manual**). O tempo do programa depende da posição da chave **0.5-10s / 5-100s**.

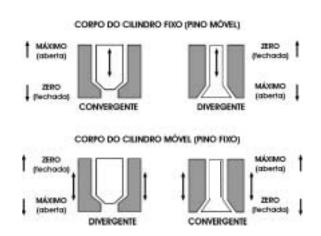
O sinal de início de programa é fornecido por um contato seco normalmente aberto ou através de sinal digital (lógica positiva: 24 volts = início programa). Este sinal inicia um novo ciclo que é indicado pelo led **Início /** FCS.

O sinal de início de programa deve permanecer ativo no mínimo por 100ms e com duração máxima inferior ao tempo do programa (deve ser desativado antes do final do programa).

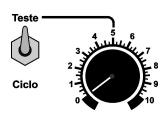
3.1.7. Retardo / Colchão

Retardo/Colchão

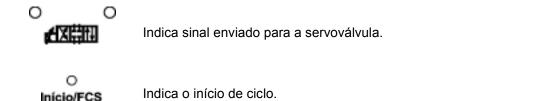
Permite que o programa permaneça parado no ponto 1 por um intervalo de tempo maior que os demais pontos.


Com isso a rebarba inferior da peça é definida apenas pelo ajuste do ponto 1, deixando os 24 pontos restantes para o perfil, evitando assim perda desnecessária de pontos de programa.

O tempo de permanência no ponto 1 está limitado a no máximo 20% do tempo total do programa, tanto em modo manual (Manual), como em automático (Auto).


3.1.8. Converge / Diverge

Configura o programador adaptando-o ao tipo de ferramenta utilizada. A figura abaixo mostra os possíveis tipos de cabeçotes convergentes e divergentes, e a respectiva posição da chave seletora **Converge / Diverge**.


3.1.9. Chave Teste / Ciclo

Na posição **Ciclo**, o programador fica em regime de produção, aguardando sinal de início de programa fornecido pela máquina. Na posição **Teste**, coloca o programador em autociclo, com duração de ciclo definida pelo potenciômetro de ajuste de **Tempo** / Carga e pela chave seletora de tempo — 0,5-10s / 5-100s. No modo **Teste**, o sinal de início fornecido pela máquina é ignorado pelo programador. Este modo permite uma verificação geral do funcionamento do programador sem a necessidade do sinal de início externo.

3.1.10. Indicações no modo extrusão contínua

Chave seletora: sua posição determina a indicação do bargraph, como segue:

Chave para a esquerda: bargraph mostra a base de tempo do programa.

Chave no centro: bargraph mostra o programa [(perfil x escala) + peso].

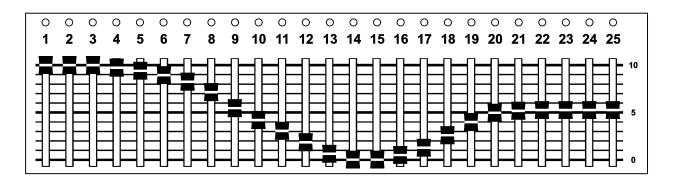
Chave para a direita: bargraph mostra posição real da ferramenta (sinal proveniente do transdutor de posição da ferramenta).

3.1.11. Esp.Retorno

Este ajuste não é utilizado no modo extrusão contínua, permanecendo desabilitado.

Esp. Retorno

3.2. AJUSTES DE PROCESSO NO MODO ACUMULAÇÃO


3.2.1. Potenciômetros de programa

Ajustam individualmente os PONTOS DO PROGRAMA (1 a 25) que interpolados linearmente geram o perfil da abertura da ferramenta, que varia em função do formato da peça a ser programada.

O ponto 1 representa a parte inferior da peça, e o ponto 25 representa a parte superior.

O curso graduado de 0 a 10 representa a abertura da ferramenta de zero ao máximo (a abertura máxima é definida pelo ajuste de Escala. Vide item 3.1.2 a seguir).

O perfil somente é gerado durante a extrusão (chute) de plástico. Durante a acumulação, a abertura da ferramenta é definida apenas pelo ajuste de Espessura de Retorno (v. item 3.2.6).

3.2.2. Escala

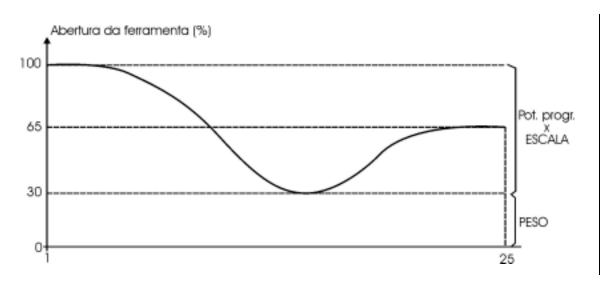
Multiplica o perfil de programação (definido pelos potenciômetros de programa) por um fator de 0 a 100%.

No modo acumulação, o ajuste de **Escala** é habilitado somente durante a extrusão (chute), como pode ser comprovado pelo LED indicador do ajuste de **Escala** aceso.

3.2.3. Peso.

Determina a abertura mínima da ferramenta durante a programação, que pode variar entre 0 a 50% da abertura total da ferramenta.

No modo acumulação o ajuste de **Peso** é habilitado somente durante a extrusão (chute), como pode ser comprovado pelo LED indicador do ajuste de **Peso** aceso.


IMPORTANTE: A abertura da ferramenta é determinada ponto a ponto da seguinte forma:

Abertura ponto z(%) =
$$\left\{\frac{\text{Ajuste do potenciômetro de programa ponto z}}{10}\right\}^{\text{POT. PROGR.}}$$
 x Escala (%) + Peso (%)

Exemplo : **Potenciômetro do ponto 20** ajustado em **8**, **Escala = 40**% e **Peso = 30**% teremos, no momento em que o ponto 20 estiver ativado, a seguinte abertura da ferramenta :

Abertura da ferramenta no ponto 20 = { 8/10 x 40% } + 30% = 62 % da abertura máxima

O mesmo ocorre com todos os pontos de programa. O gráfico abaixo mostra a abertura da ferramenta para o perfil do item 3.1.1 com Escala = 70% e Peso = 30%:

3.2.4. Retardo / Colchão

Retardo/Colchão

Ajusta a quantidade mínima de material que deve permanecer dentro do acumulador no final da extrusão (chute).

A faixa de ajuste é de 0 a 20% do volume total do acumulador.

Deve ser utilizado para materiais como PVC, para evitar a

queima do material residual no acumulador.

3.2.5. Tempo / Carga

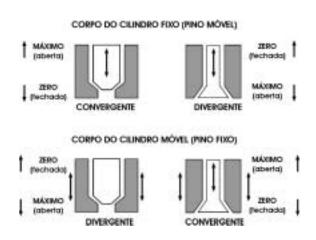
Tempo/Carga

Ajusta o volume de material a ser injetado, adicionalmente ao colchão [que permanece no interior do acumulador no final da extrusão (chute)].

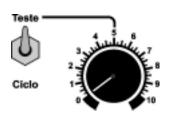
IMPORTANTE: a soma dos valores **Carga** e **Colchão** deve ser igual ou inferior a 100%.

3.2.6. Esp.Retorno.

Esp. Retorno

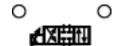

O controle de espessura de retorno ajusta a abertura da ferramenta durante a acumulação de material, de 0 a 100% da abertura total da ferramenta.

A habilitação é indicada pelo LED correspondente.


3.2.7. Converge / Diverge

Configura o programador adaptando-o ao tipo de ferramenta utilizada. A figura abaixo mostra os possíveis tipos de cabeçotes convergentes e divergentes, e a respectiva posição da chave seletora **Converge / Diverge**.

3.2.8. Chave Teste / Ciclo



No modo **Ciclo**, o programador fica em regime de produção aguardando o próximo ciclo da máquina (acumulação e extrusão do material).

Na posição **Teste**, pode-se simular o ciclo completo da máquina com o auxílio do potenciômetro de teste (simula transdutor do acumulador) e verificar o funcionamento geral do programador.

3.2.9. Indicações no modo acumulação

Indica o sinal enviado para a servoválvula.

Indica o **Fim de Curso Superior** do acumulador, que corresponde ao volume ajustado pela **Carga + Colchão**.

Neste momento são habilitados os controles de **Peso** e **Escala**, indicados pelos leds correspondentes.

O ajuste de **Espessura de Retorno** é desabilitado e o programador está pronto para acompanhar a extrusão (chute).

O FCI Indica o **Fim de Curso Inferior** do acumulador, que corresponde ao final do processo de extrusão (chute) do material.

Após o tempo de Retardo de Espessura de Retorno (RER - mín.~0,4 seg e máx.~11 seg.) o controle de **Espessura de Retorno** é habilitado, com a indicação do LED correspondente.

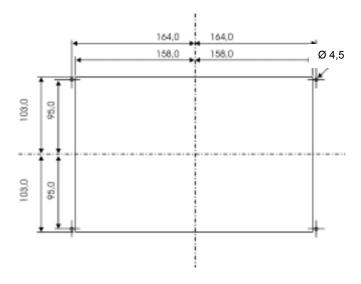
Os controles de **Peso** e **Escala** são desabilitados e o programador fica em "stand-by", aguardando a acumulação do material.

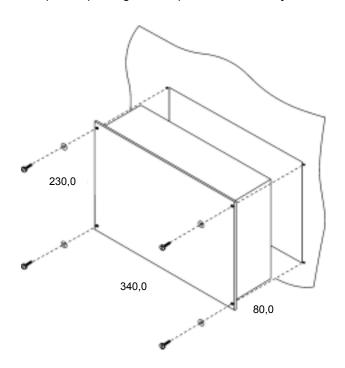
A ferramenta assume a posição ajustada pelo valor do potenciômetro de **Espessura de Retorno** (Ex. 5%).

Chave seletora: sua posição determina a indicação do bargraph, como segue:

Chave para a esquerda: bargraph mostra a posição real do êmbolo do acumulador (sinal proveniente do transdutor do acumulador).

Chave no centro: bargraph mostra o programa : (Perfil x Escala) + Peso


Chave para a direita: bargraph mostra a posição real da ferramenta (sinal proveniente do transdutor da ferramenta).


4. INSTALAÇÃO

4.1. DIMENSÕES PARA INSTALAÇÃO DO PROGRAMADOR G25

Desenho de furação para instalação em painel.

Com um estilete, perfurar a etiqueta de policarbonato nos furos localizados no painel frontal do programador, para a passagem dos parafusos de fixação.

5. TEST BOX Z129-008-002

O test box permite ao usuário monitorar os principais sinais elétricos do programador G25, facilitando os ajustes e a verificação do funcionamento do equipamento.

Esse test box é o mesmo utilizado no programador P25C. A conexão é feita através de um conector DB9 localizado na parte traseira do programador G25.

O test box permite monitorar os seguintes sinais (todas as medidas em relação ao ponto ▼=0V):

- +15V / -15V tensões de alimentação.
- TRANSD.ACUM. sinal de 0 a –15V proveniente do transdutor de posição do acumulador.

RAMPA

Modo Extrusão Contínua: base de tempo do programa - rampa de 0 a -10V, correspondente ao avanço dos pontos 1 a 25. A inclinação da rampa depende do tempo de ciclo. Modo Acumulação: rampa de controle do programa na faixa de 0 a 10V, nesse caso proporcional à posição do transdutor do acumulador (sinal que é ajustado pelos trimpots FCS e FCI). A inclinação da rampa depende da velocidade de extrusão (chute) do acumulador.

- PROGRAMA Sinal de 0 a +10V proporcional à abertura da ferramenta, definida por : Abertura ponto z(%) = { Ajuste do potenciômetro de programa ponto z | POT. PROGR. x Escala (%) + Peso (%)
- SERVO Sinal de erro da malha fechada de posição, normalmente ao redor de 0V.
 Assume valores entre +/- 10V no deslocamento da haste do servocilindro.
 Quanto maior a velocidade de deslocamento, maior o sinal de erro.
- BARGRAPH Sinal de 0 a +10V que é indicado pelo bargraph.
 0V indica a ferramenta totalmente fechada (apenas o LED inferior permanece aceso) e +10V indica a ferramenta totalmente aberta (todos os LEDs acesos).
- POSIÇÃO FERRAMENTA Sinal do transdutor de posição da ferramenta.
 A faixa de sinal dependerá do tipo de transdutor de posição utilizado (LVDT, DCDT ou potenciômetro Linear).

6. AJUSTES DO CURSO DA FERRAMENTA (MODO EXTRUSÃO CONTÍNUA E ACUMULAÇÃO)

Para o correto funcionamento do programador de parison, devemos atentar para os ajustes do transdutor de posição da ferramenta (abertura do cabeçote) e da malha de posição.

Devemos primeiramente identificar o tipo de transdutor, servoatuador e servoválvula, pois o procedimento de ajuste difere caso a caso, conforme descrito a seguir.

6.1. SERVOATUADORES COM ELETRÔNICA INTEGRADA

Não há qualquer tipo de ajuste a ser feito neste caso, pois os servoatuadores com eletrônica integrada já são ajustados em fábrica (otimização de curso útil e resposta dinâmica).

6.2. SERVOATUADORES COM TRANSDUTOR, SEM ELETRÔNICA INTEGRADA

Nos servoatuadores convencionais, a malha de controle de posição tem que ser ajustada no programador através dos trimpots de Zero, Máximo e Ganho. Antes, porém, deve-se ajustar mecanicamente o transdutor de posição.

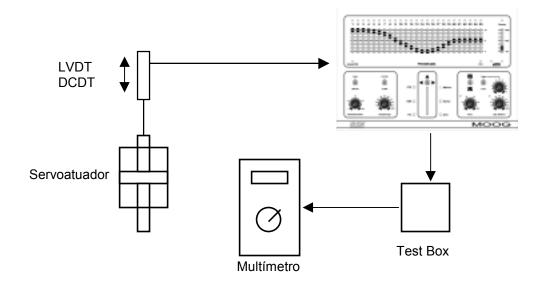
Para realização destes ajustes deve-se dispor de:

- Servoteste MOOG, ou bateria para comandar manualmente a servoválvula :
 - Para servoválvulas mecânicas (631 / 760) pilha de 1,5V.
 - Para servoválvulas eletrônicas (DDV) bateria de 9V.
- Test Box MOOG modelo Z129-008-002.
- Multímetro Digital (em escala de Tensão Contínua).

Antes de proceder a qualquer ajuste do curso da ferramenta :

- a) Certificar-se que o cabo do transdutor de posição esteja conectado ao programador.
- b) Soltar mecanicamente a ferramenta da haste do servoatuador, para evitar danos.

Em qualquer caso, o trimpot **Ganho** ajusta a velocidade de resposta do servoatuador (e consequentemente da ferramenta), fazendo com que responda mais rápido ou mais lentamente.


Lembrar que a velocidade máxima é limitada pela vazão e pressão disponíveis no sistema hidráulico.

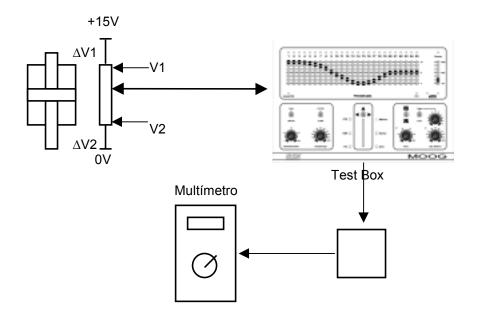
6.2.1. Servoatuadores com transdutor de posição DCDT ou LVDT

Neste caso, o sinal de posição é simétrico em relação ao terra (0V). Exemplo: +/-4V.

- a) Certificar-se de que se pode mover a haste do servoatuador através do servoteste conectado à servoválvula, ou com uma bateria ligada aos fios 1 e 3 do cabo da servoválvula (o movimento é invertido, invertendo-se a polaridade da bateria).
- b) Mover a haste do servoatuador para o final do curso. Verificar a leitura de tensão no ponto **POSIÇÃO FERRAMENTA** do test box.
- c) Mover a haste do atuador para o outro extremo. Verificar a leitura de tensão no ponto **POSIÇÃO FERRAMENTA** do test box.
- d) As leituras dos itens "b" e "c" devem ser simétricas dentro de uma tolerância de 0,5V. Caso não estejam, será necessário o ajuste mecânico do transdutor, que deve ser feito movendo o corpo e/ou vareta do mesmo (depende da forma construtiva do servoatuador e/ou do transdutor), de maneira a obter valores de tensão simétricos nos extremos do curso do servoatuador.

Polaridade do Sinal dos transdutores DCDT ou LVDT

Modo de Operação	Ferramenta Aberta	Ferramenta Fechada
Divergente	Tensão	Tensão
	Negativa	Positiva
Convergente	Tensão	Tensão
	Positiva	Negativa



6.2.2. Servoatuadores com potenciômetro linear

Neste caso, o sinal de posição é somente positivo em relação ao terra (0V), com valores entre 0 e 10V. Por exemplo: 1 a 8V.

- a) Certificar-se de que se pode mover a haste do servoatuador através do servoteste conectado à servoválvula, ou com uma bateria ligada aos fios 1 e 3 do cabo da servoválvula (o movimento é invertido, invertendo-se a polaridade da bateria).
- b) Mover a haste do servoatuador para o final do curso. Verificar a leitura de tensão no ponto **POSIÇÃO FERRAMENTA** do test box.
- c) Mover a haste do atuador para o outro extremo. Verificar a leitura de tensão no ponto **POSIÇÃO FERRAMENTA** do test box.
- d) A leitura num extremo da hasta do servoatuador deverá ser maior que 0V, e no extremo oposto menor que 10V.
 Caso não estejam dentro do esperado, será necessário o ajuste mecânico do

caso nao estejam dentro do esperado, sera necessario o ajuste mecanico do transdutor, que deve ser feito movendo o corpo e/ou vareta do mesmo (depende da forma construtiva do servoatuador e/ou do transdutor), de maneira a obter valores de tensão dentro da faixa de 0 a 10V.

Polaridade do Sinal do transdutor POTENCIOMETRO LINEAR

Modo de Operação	Ferramenta Aberta	Ferramenta Fechada
Divergente	Tensão V 1	Tensão V 2
Convergente	Tensão V 2	Tensão V 1

6.3. AJUSTE DO INDICADOR DE POSIÇÃO - BARGRAPH

Após o ajuste mecânico do transdutor de posição, deve-se ajustar o sinal do bargraph para que este indique visualmente a posição real da ferramenta.

Para tanto, será necessário movimentar a haste do servoatuador para os limites do curso (como explicado anteriormente para os ajustes do transdutor).

Deve-se monitorar com um multímetro digital o sinal entre os pontos **BARGRAPH** e ▼ (0V) do test box e ajustar os trimpots **Zero** e **Máximo** conforme tabela abaixo:

Modo de operação	Ferramenta fechada	Ferramenta aberta
Divergente ou	Ajustar -0,2V	Ajustar +10,2V
Convergente	trimpot Zero	Trimpot Máximo

6.4. AJUSTE DO CURSO ÚTIL DO ACUMULADOR

Este ajuste permite ao usuário otimizar a capacidade total do acumulador da máquina.

Para realizar este ajuste é necessário posicionar a haste do transdutor de posição do acumulador (normalmente utiliza-se um potenciômetro linear) nas posições equivalentes a totalmente <u>cheio</u> e totalmente <u>vazio</u>. Isso pode ser feito enchendo o acumulador (acionamento manual da extrusora), e em seguida esvaziando-o (comando manual de injeção).

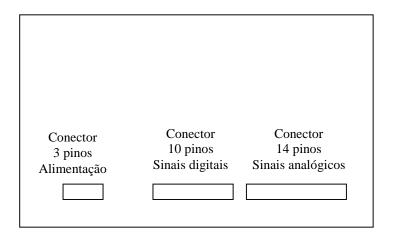
Entretanto, a forma mais fácil de simular acumulador cheio e vazio, sem a necessidade de uso de material, é desconectando a haste do transdutor do acumulador, posicionando-a manualmente nos extremos correspondentes (utilizar apenas o curso útil do acumulador).

Ajustar Tempo/Carga = 100% e Retardo/Colchão = 0%.

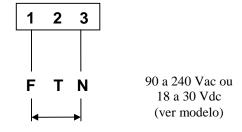
Com um multímetro digital (escala Volts DC) monitorando os pontos **RAMPA** e ▼ do test box, ajustar os trimpots **FCS** (<u>F</u>im de <u>C</u>urso <u>S</u>uperior = acumulador 100% cheio) e **FCI** (Fim de Curso Inferior = acumulador totalmente vazio), até obter as seguintes leituras :

Posição do Acumulador	Trimpot	Leitura do multímetro
Cheio	FCS	0V
Vazio	FCI	-10V

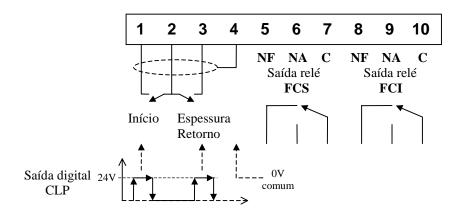
6.5. RETARDO DE ESPESSURA DE RETORNO (RER)


No modo acumulação, o trimpot RER (<u>R</u>etardo de <u>E</u>spessura de <u>R</u>etorno) ajusta numa faixa de ~0,4 seg a ~10 seg, o atraso na comutação dos controles de <u>Perfil + Escala + Peso</u> (ferramenta programando durante a injeção) para o controle de <u>Espessura de Retorno</u> (normalmente ferramenta fechada para não vazar material).

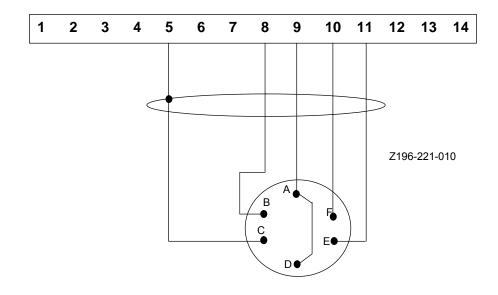
Esse atraso é útil quando, por motivos de processo ou próprios da máquina, o fechamento do molde é lento. Neste caso, se o controle de Espessura de Retorno for habilitado logo após a injeção do parison, o fechamento da ferramenta faz com que o mesmo seja cortado e caia, não dando tempo do molde "agarrá-lo". Assim sendo, ajusta-se um tempo de retardo de forma o molde possa fechar e agarrar o parison antes que seja cortado.



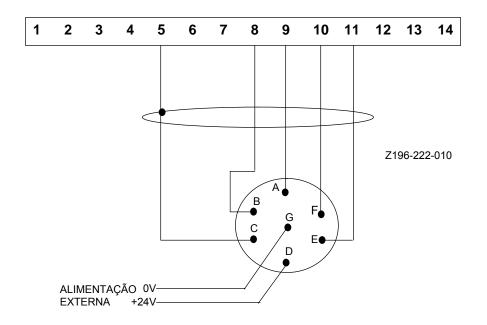
7. DIAGRAMAS DE LIGAÇÕES


7.1. IDENTIFICAÇÃO DOS CONECTORES (VISTA TRASEIRA DO PROGRAMADOR)

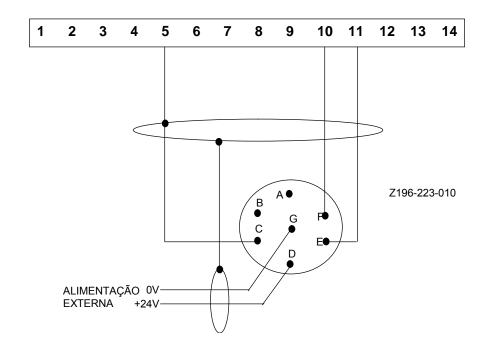
7.2. CONEXÃO À REDE ELÉTRICA - CONECTOR 3 PINOS



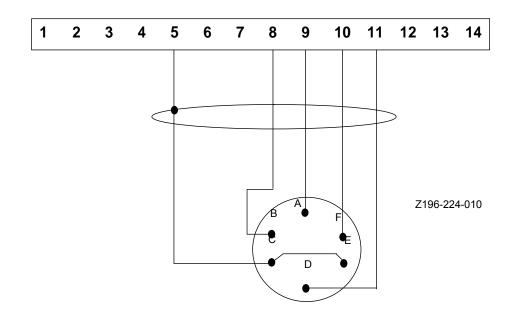
7.3. SINAIS DIGITAIS - CONECTOR 10 PINOS



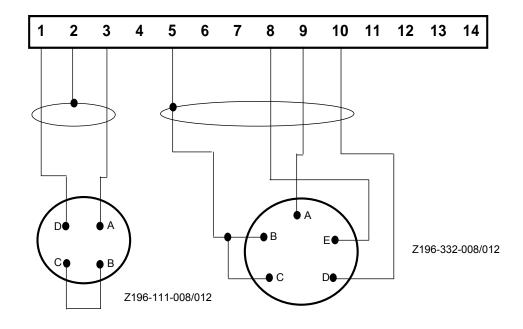
7.1. Ligação para servoatuador com eletrônica integrada +/-15V com servoválvula 631



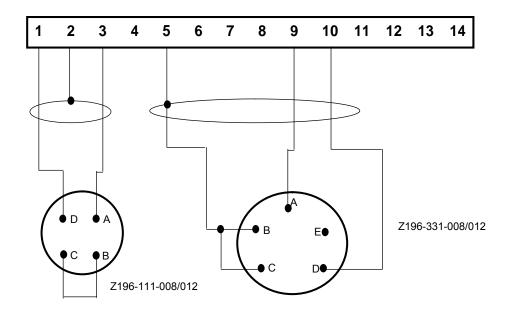
7.2. Ligação para servoatuador +/-15V, +24V com servoválvula DDV



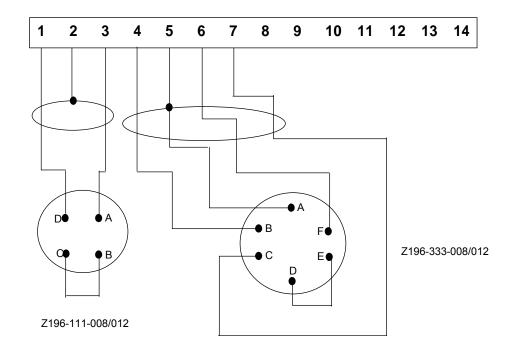
7.3. Ligação para servoatuador +24V com servoválvula DDV ou 631



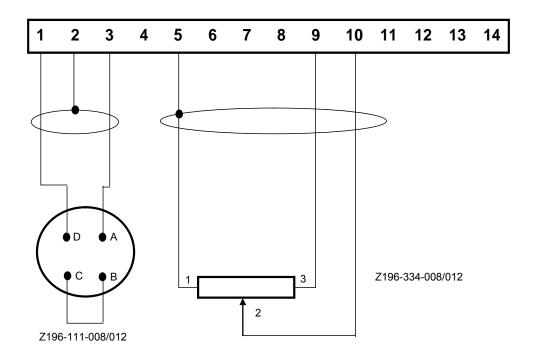
7.4. Ligação para servoatuador L085 +/-15V com servoválvula 631



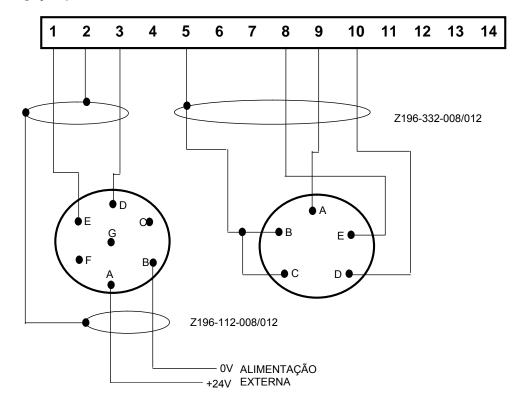
7.5. Ligação para servoválvula 631 e transdutor DCDT Z131-300-025



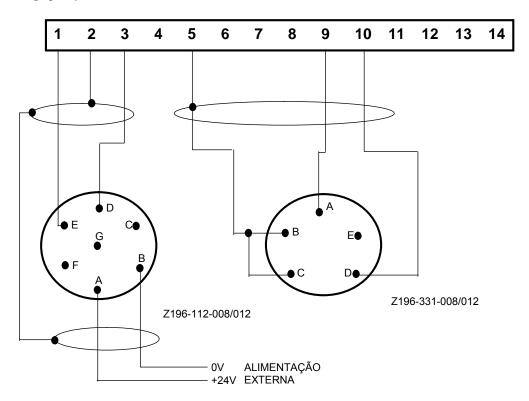
7.6. Ligação para servoválvula 631 e transdutor DCDT A31121-004



7.7. Ligação para servoválvula 631 e transdutor LVDT

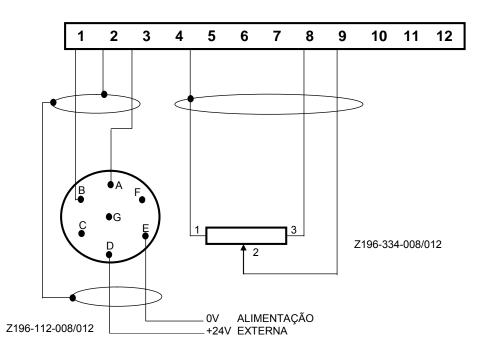


7.8. Ligação para servoválvula 631 e potenciômetro linear

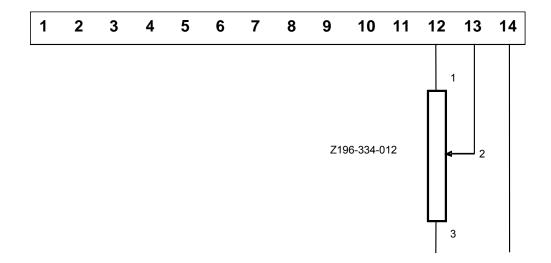


7.9. Ligação para servoválvula DDV e transdutor DCDT Z131-300-025

7.10. Ligação para servoválvula DDV e transdutor DCDT A31121-004



7.11. Ligação para servoválvula DDV e transdutor LVDT



7.12. Ligação para servoválvula DDV e potenciômetro linear

7.13. Ligação do transdutor do acumulador - potenciômetro linear

