Series 6DOF25000E

Electric Motion Platform

> 6 Degrees of Freedom

> 10,500 Kg/23, 150 lbs Customer Installed Payload
> Modular Actuator and Joint Design
> 100\% Electric Actuation
> 100\% Digital Control Electronics and Power Amplifiers

Worldwide Support

North \& South America:

Moog Inc., Industrial Controls Division, East Aurora, New York 14052-0018
Telephone: 716/655-3000 • Fax: 716/687-4401

Europe:

Moog Controls Ltd., Tewkesbury, United Kingdom • Telephone: +44(0) 1684-296600 • Fax: +44(0) 1684-296760
Moog GmbH, Böblingen, Germany • Telephone: +49(0)7031-622-0 • Fax: +49(0)703 1-622-100
Moog Sarl, Cedex, France • Telephone: +33(0) 145607000 • Fax: $+33(0) 145607001$
Moog Sarl Sucursal En España, Orio, Spain • Telephone: +34(0)9 43133240•Fax: +34(0)943133180

Pacific:

Moog Australia Pty. Ltd., Mulgrave, Australia • Telephone: +61 (0)3 9561-6044 • Fax: +61 (0)3 9562-0246
Moog Japan Ltd., Hiratsuka, Japan • Telephone: +81 (0)463-55-3615 • Fax: +81 (0)463-54-4709

Series 6DOE25000:

Moog Inc.

Moog Industrial Controls offers high performance solutions to motion simulator requirements. Fifty years of experience and a proven track record makes Moog the world's leading supplier of motion system components and integrated platforms in both the training and entertainment markets.

Moog produces both 4 degree and 6 degree of freedom (DOF) motion bases, with actuator strokes ranging from 12 to 62 inches and load capacities up to $14,600 \mathrm{Kg}(32,200 \mathrm{lbs})$.

Specifications: 6DOF25000E Size:

Settled Height
(top of joint interface)....2.5 m (82.94") (with 60" stroke)
Foot Print. \qquad $.6 .3 \mathrm{~m}(\mathrm{w}) \times 5.5 \mathrm{~m}$ (247" $(\mathrm{w}) \times 215^{\prime \prime}$)
System Weight
(actuators and joints) $6170 \mathrm{Kg}(13,600 \mathrm{lbs}$)

Facility:

Floor Loading Compression
Average Operating
(0.8 g heave) $6347 \mathrm{Kg} / \mathrm{m}^{2}$
$\left(1300 \mathrm{lb} / \mathrm{ft}^{2}\right)$
Main....................... $3 \phi, 460-500$ vac.
$50-60 \mathrm{~Hz}$

Load:

Max. Flying Payload.. $11,430 \mathrm{Kg}(25,200 \mathrm{lbs})$ Max. Customer Added Payload
$.10,500 \mathrm{Kg}(23,150 \mathrm{lbs})$
CG Location
Horizontal $\leq 0.15 \mathrm{~m}\left(6.0^{\prime \prime}\right)$
Vertical ≤ 1.78 m (70")
(above the motion centroid)
Motion Centroid0.152 m (6.0")
(below the top of the platform joints)
Mass Moment of Inertia
(relative to motion centroid)
Pitch Axis \qquad $67,790 \mathrm{Kg}-\mathrm{m}^{2}$ (50,000 Slug-ftr$)$
Roll Axis. \qquad $67,790 \mathrm{Kg}-\mathrm{m}^{2}$ (50,000 Slug- ft^{2})
Yaw Axis.............. $54,230 \mathrm{Kg}-\mathrm{m}^{2}$ (40,000 Slug-ftr$)$

Actuator Features:

- 60" Stroke Actuators
- DC Brushless Servomotor
- In-line motor design, direct drive
- High efficiency, low friction actuator design
- Ballscrew or rollerscrew design available
- Patented internal hydraulic snubbers
- High resolution absolute encoder feedback
- Home limit switches
- Motors contain internal thermal protection

Documentation:

- Facility Requirements
- Installation Instructions
- Operation/Maintenance Manual

Reliability:

- Custom high efficiency drives and actuators optimized for performance and long life in demanding applications.
Designed for a minimum 10 year life.
- Detailed fault tree analysis for all single point and multiple failure modes has been performed.
- Drives have been life cycle tested and have proven field history.

Field Service and Repair:

- One (1) year part warranty from the date of shipment
- Worldwide support
- Installation and training support provided

Compliance:

- The system is designed to U.S. and European electrical codes.
- The system utilizes UL and CE compliant components.
- Designed to meet the AFGS-87241A requirement to egress to home position in event of major single point failures.
- Electronics are CE marked

Interface Options:

Ethernet or Firewire Interface

- Profile Storage
- Real Time
- Real Time with Motion Cueing (Motion Dynamics Algorithm)

Motion System Interfaces:

Motion:

			$\begin{aligned} & \lambda \\ & \vdots \\ & 0 \\ & \vdots \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 듷 } \\ & \text { 음 } \\ & \frac{1}{0} \\ & \hline \mathbb{U} \\ & 4 \end{aligned}$
Pitch	$+36.3 \mathrm{deg}$ -32.4 deg	$\begin{aligned} & +26.3 \mathrm{deg} \\ & \text {-24.0 deg } \end{aligned}$	$\pm 21.6 \mathrm{deg} / \mathrm{s}$	$\pm 200 \mathrm{deg} / \mathrm{s}^{2}$
Roll	$\pm 32.5 \mathrm{deg}$	$\pm 26.2 \mathrm{deg}$	$\pm 24.0 \mathrm{deg} / \mathrm{s}$	$\pm 200 \mathrm{deg} / \mathrm{s}^{2}$
Yaw	$\pm 35.1 \mathrm{deg}$	$\pm 32.9 \mathrm{deg}$	$\pm 28.9 \mathrm{deg} / \mathrm{s}$	$\pm 200 \mathrm{deg} / \mathrm{s}^{2}$
Heave	$\begin{gathered} \pm 0.87 \mathrm{~m} \\ (\pm 34.4 \mathrm{in}) \end{gathered}$	$\begin{gathered} \pm 0.88 \mathrm{~m} \\ (\pm 34.7 \mathrm{in}) \end{gathered}$	$\begin{gathered} \pm 0.77 \mathrm{~m} / \mathrm{s} \\ (\pm 30.2 \mathrm{in} / \mathrm{s}) \end{gathered}$	$\pm 0.8 \mathrm{~g}$
Surge	$\begin{aligned} & +1.39,-1.42 \mathrm{~m} \\ & (+54.8,-56.0 \mathrm{in}) \end{aligned}$	$\binom{+1.32,-1.08 \mathrm{~m}}{(+52.0,-42.5 \mathrm{in})}$	$\begin{gathered} \pm 1.03 \mathrm{~m} / \mathrm{s} \\ (\pm 40.7 \mathrm{in} / \mathrm{s}) \end{gathered}$	$\pm 1.0 \mathrm{~g}$
Sway	$\begin{aligned} & \pm 1.54 \mathrm{~m} \\ & (\pm 60.5 \mathrm{in}) \end{aligned}$	$\begin{array}{r} \pm 1.09 \mathrm{~m} \\ (\pm 42.9 \mathrm{in}) \end{array}$	$\begin{gathered} \pm 1.05 \mathrm{~m} / \mathrm{s} \\ (\pm 41.2 \mathrm{in} / \mathrm{s}) \end{gathered}$	$\pm 1.0 \mathrm{~g}$

Specifications are subject to change without notice

